Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants.

Identifieur interne : 000741 ( Main/Exploration ); précédent : 000740; suivant : 000742

Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants.

Auteurs : Ewa M. Kalemba [Pologne] ; Ewelina Stolarska [Pologne]

Source :

RBID : pubmed:30875880

Descripteurs français

English descriptors

Abstract

Oxidation of methionine to methionine sulfoxide is a type of posttranslational modification reversed by methionine sulfoxide reductases (Msrs), which present an exceptionally high number of gene copies in plants. The side-form general antioxidant function-specific role of each Msr isoform has not been fully studied. Thirty homologous genes of Msr type A (MsrA) and type B (MsrB) that originate from the genomes of Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa were analyzed in silico. From 109 to 201 transcription factors and responsive elements were predicted for each gene. Among the species, 220 and 190 common transcription factors and responsive elements were detected for the MsrA and MsrB isoforms, respectively. In a comparison of 14 MsrA and 16 MsrB genes, 424 transcription factors and responsive elements were reported in both types of genes, with almost ten times fewer unique elements. The transcription factors mainly comprised plant growth and development regulators, transcription factors important in stress responses with significant overrepresentation of the myeloblastosis viral oncogene homolog (MYB) and no apical meristem, Arabidopsis transcription activation factor and cup-shaped cotyledon (NAC) families and responsive elements sensitive to ethylene, jasmonate, sugar, and prolamine. Gene Ontology term-based functional classification revealed that cellular, metabolic, and developmental process terms and the response to stimulus term dominated in the biological process category. Available experimental transcriptomic and proteomic data, in combination with a set of predictions, gave coherent results validating this research. Thus, new manners Msr gene expression regulation, as well as new putative roles of Msrs, are proposed.

DOI: 10.3390/ijms20061309
PubMed: 30875880
PubMed Central: PMC6471524


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants.</title>
<author>
<name sortKey="Kalemba, Ewa M" sort="Kalemba, Ewa M" uniqKey="Kalemba E" first="Ewa M" last="Kalemba">Ewa M. Kalemba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland. kalemba@man.poznan.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik</wicri:regionArea>
<wicri:noRegion>62-035 Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stolarska, Ewelina" sort="Stolarska, Ewelina" uniqKey="Stolarska E" first="Ewelina" last="Stolarska">Ewelina Stolarska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland. ewelina.stolarska89@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik</wicri:regionArea>
<wicri:noRegion>62-035 Kórnik</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30875880</idno>
<idno type="pmid">30875880</idno>
<idno type="doi">10.3390/ijms20061309</idno>
<idno type="pmc">PMC6471524</idno>
<idno type="wicri:Area/Main/Corpus">000990</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000990</idno>
<idno type="wicri:Area/Main/Curation">000990</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000990</idno>
<idno type="wicri:Area/Main/Exploration">000990</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants.</title>
<author>
<name sortKey="Kalemba, Ewa M" sort="Kalemba, Ewa M" uniqKey="Kalemba E" first="Ewa M" last="Kalemba">Ewa M. Kalemba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland. kalemba@man.poznan.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik</wicri:regionArea>
<wicri:noRegion>62-035 Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stolarska, Ewelina" sort="Stolarska, Ewelina" uniqKey="Stolarska E" first="Ewelina" last="Stolarska">Ewelina Stolarska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland. ewelina.stolarska89@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik</wicri:regionArea>
<wicri:noRegion>62-035 Kórnik</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Computational Biology (methods)</term>
<term>Computer Simulation (MeSH)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Methionine Sulfoxide Reductases (genetics)</term>
<term>Methionine Sulfoxide Reductases (metabolism)</term>
<term>Oryza (enzymology)</term>
<term>Oryza (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Proteomics (methods)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Biologie informatique (méthodes)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gene Ontology (MeSH)</term>
<term>Methionine Sulfoxide Reductases (génétique)</term>
<term>Methionine Sulfoxide Reductases (métabolisme)</term>
<term>Oryza (enzymologie)</term>
<term>Oryza (génétique)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéomique (méthodes)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Methionine Sulfoxide Reductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Methionine Sulfoxide Reductases</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Gene Expression Profiling</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Biologie informatique</term>
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gene Ontology</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidation of methionine to methionine sulfoxide is a type of posttranslational modification reversed by methionine sulfoxide reductases (Msrs), which present an exceptionally high number of gene copies in plants. The side-form general antioxidant function-specific role of each Msr isoform has not been fully studied. Thirty homologous genes of Msr type A (MsrA) and type B (MsrB) that originate from the genomes of
<i>Arabidopsis thaliana</i>
,
<i>Populus trichocarpa,</i>
and
<i>Oryza sativa</i>
were analyzed in silico. From 109 to 201 transcription factors and responsive elements were predicted for each gene. Among the species, 220 and 190 common transcription factors and responsive elements were detected for the
<i>MsrA</i>
and
<i>MsrB</i>
isoforms, respectively. In a comparison of 14
<i>MsrA</i>
and 16
<i>MsrB</i>
genes, 424 transcription factors and responsive elements were reported in both types of genes, with almost ten times fewer unique elements. The transcription factors mainly comprised plant growth and development regulators, transcription factors important in stress responses with significant overrepresentation of the myeloblastosis viral oncogene homolog (MYB) and no apical meristem, Arabidopsis transcription activation factor and cup-shaped cotyledon (NAC) families and responsive elements sensitive to ethylene, jasmonate, sugar, and prolamine. Gene Ontology term-based functional classification revealed that cellular, metabolic, and developmental process terms and the response to stimulus term dominated in the biological process category. Available experimental transcriptomic and proteomic data, in combination with a set of predictions, gave coherent results validating this research. Thus, new manners
<i>Msr</i>
gene expression regulation, as well as new putative roles of Msrs, are proposed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30875880</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>Mar</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1309</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms20061309</ELocationID>
<Abstract>
<AbstractText>Oxidation of methionine to methionine sulfoxide is a type of posttranslational modification reversed by methionine sulfoxide reductases (Msrs), which present an exceptionally high number of gene copies in plants. The side-form general antioxidant function-specific role of each Msr isoform has not been fully studied. Thirty homologous genes of Msr type A (MsrA) and type B (MsrB) that originate from the genomes of
<i>Arabidopsis thaliana</i>
,
<i>Populus trichocarpa,</i>
and
<i>Oryza sativa</i>
were analyzed in silico. From 109 to 201 transcription factors and responsive elements were predicted for each gene. Among the species, 220 and 190 common transcription factors and responsive elements were detected for the
<i>MsrA</i>
and
<i>MsrB</i>
isoforms, respectively. In a comparison of 14
<i>MsrA</i>
and 16
<i>MsrB</i>
genes, 424 transcription factors and responsive elements were reported in both types of genes, with almost ten times fewer unique elements. The transcription factors mainly comprised plant growth and development regulators, transcription factors important in stress responses with significant overrepresentation of the myeloblastosis viral oncogene homolog (MYB) and no apical meristem, Arabidopsis transcription activation factor and cup-shaped cotyledon (NAC) families and responsive elements sensitive to ethylene, jasmonate, sugar, and prolamine. Gene Ontology term-based functional classification revealed that cellular, metabolic, and developmental process terms and the response to stimulus term dominated in the biological process category. Available experimental transcriptomic and proteomic data, in combination with a set of predictions, gave coherent results validating this research. Thus, new manners
<i>Msr</i>
gene expression regulation, as well as new putative roles of Msrs, are proposed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kalemba</LastName>
<ForeName>Ewa M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland. kalemba@man.poznan.pl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stolarska</LastName>
<ForeName>Ewelina</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland. ewelina.stolarska89@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2015/18/E/NZ9/00729</GrantID>
<Agency>Narodowe Centrum Nauki</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="D051150">Methionine Sulfoxide Reductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051150" MajorTopicYN="N">Methionine Sulfoxide Reductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">gene expression</Keyword>
<Keyword MajorTopicYN="N">methionine sulfoxide</Keyword>
<Keyword MajorTopicYN="N">responsive element</Keyword>
<Keyword MajorTopicYN="N">transcription factor</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30875880</ArticleId>
<ArticleId IdType="pii">ijms20061309</ArticleId>
<ArticleId IdType="doi">10.3390/ijms20061309</ArticleId>
<ArticleId IdType="pmc">PMC6471524</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2000 Feb;21(4):329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 28;276(52):48915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11677230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Apr 1;16(7):880-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(3):349-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 May;2(5):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2002 Jul;267(5):613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):713-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jan;33(2):305-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12535344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Apr;16(4):908-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1478-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2261-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1612-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jul 1;21(13):2933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):1095-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16428600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):247-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(4):557-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17059406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17036-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 May;48(5):724-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17395603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):660-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1035-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2440-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):747-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Dec;48(12):1713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17956860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(13):3657-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 7;283(10):6040-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 9;283(19):13407-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18308732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):851-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Jun;230(1):227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19415325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jan;2(1):43-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):202-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20149112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):757-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2011 May;31(5):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21399993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2011 May;10(5):M110.006866</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21406390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21911380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 May;39(5):6297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22350151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Oct;53(10):1707-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23314941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23401556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1551-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23868073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2013 Nov;55(11):1166-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23911125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Sep;25(9):3472-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24045019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Sep 03;4:248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2014 Jan-Feb;32(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2014 Jan;56(1):38-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24122284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4708-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24285786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2013 Jul;19(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24431500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24477691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Jun;55(6):1080-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24599390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 Jun 17;15(6):10868-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24941250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Oct;114(6):1099-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24984711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Aug 25;30(4):437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25132385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Nov 7;454(1):30-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25450358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(10):e970406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25482809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 May;14(5):1217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25693801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jun;56(6):1183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 17;6:122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25852698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Aug;83(3):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26047210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2016 May;58(5):442-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26178734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Nov 18;6:8822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26578169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Aug 02;16(1):172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27484174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Sep;28(9):2097-2116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27604696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2016 Dec;131:128-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27702579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2017 Jan;93(1-2):109-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27900506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 May 5;45(8):e65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28082394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Aug;174(4):2363-2375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28649093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Feb 1;59(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29186531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1773-1792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29192025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2018 May 15;179:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29471058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 May 31;19(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29857524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Jun 23;19(7):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29937503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jun 20;9:835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29973943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2018 Dec;248(6):1487-1503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30132153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxidants (Basel). 2018 Aug 29;7(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30158486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Dec 1;59(12):2476-2489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30165667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2018 Dec;231:374-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30388677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7017726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Jan;10(1):75-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9477573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Kalemba, Ewa M" sort="Kalemba, Ewa M" uniqKey="Kalemba E" first="Ewa M" last="Kalemba">Ewa M. Kalemba</name>
</noRegion>
<name sortKey="Stolarska, Ewelina" sort="Stolarska, Ewelina" uniqKey="Stolarska E" first="Ewelina" last="Stolarska">Ewelina Stolarska</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000741 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000741 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30875880
   |texte=   Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30875880" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020